
Mobile Computing
Managing State on Android

CC BY-SA 4.0, T. Amberg, FHNW; Based on
CC BY 2.5, Android Open Source Project

Slides: tmb.gr/mc-mst

Source on GDocs

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by/2.5/
https://source.android.com
http://tmb.gr/mc-mst
https://docs.google.com/presentation/d/1mbpuNFKMkPtXqV9OuvHm09QFt_Ev9G8ano8C3elxo-g/edit?usp=sharing

Overview

These slides show how to manage state on Android.

How application UI state can be saved in Compose.

How to use a ViewModel to move data/logic away.

2

Prerequisites

Have some basic knowledge of writing Kotlin code.

Finish the lesson on composing UIs for Android.

Bring your Android device or use the emulator.

3

http://tmb.gr/mc-ktn
http://tmb.gr/mc-uis

Compose is Kotlin .kt|.html

Compose uses nested function calls and Kotlin idioms.

fun Row(
 modifier: Modifier = Modifier, …,
 content: @Composable RowScope.() -> Unit)

Row(…, { … }) // content param is a lambda
Row(…) { … } // trailing lambda, outside ()
Row() { … } // default params can be omitted
Row { … } // empty constructor, OK to omit () 4

https://pl.kotl.in/FvvQ4fZS_
https://developer.android.com/develop/ui/compose/kotlin

Conditional UI .kt|.html

Use conditionals (if, etc.), to show/hide UI elements.

if (newToThis) { Onboarding() } else { App() }

A multi-page UI could work like this, using when.

when (page) {
 1 -> ScreenA(…) // calls page++
 2 -> ScreenB(…) // calls page++ or page--
 else ScreenC(…) }

5

https://github.com/tamberg/mse-tsm-mobcom/blob/main/02/Android/MyStatefulApp/app/src/main/java/com/example/mystatefulapp/MainActivity.kt#L46
https://developer.android.com/codelabs/basic-android-kotlin-compose-conditionals#0

Button onClick event .html

Button provides a onClick event, to plug in a lambda.

@Composable
fun MyCounter() {
 var n = remember { mutableStateOf(0) } //*
 Button(onClick = { n.value++ }) {
 Text("${n.value}")
 } }

*Value stays around, like a static local variable in C. 6

https://developer.android.com/develop/ui/compose/components/button

Mutable state .html

Compose updates the UI, if underlying data changes,
mutableStateOf() provides plumbing needed for this.

val state = x // does not notify on changes
val state = mutableStateOf(x) // not stored

Functions can be (re)evaluated any time, in any order,
remember() preserves the state across recomposition.

val state = remember { mutableStateOf(x) } 7

https://developer.android.com/codelabs/jetpack-compose-basics#6

Saveable state .html

The remember() function works as long as the Activity.

val s = remember { mutableStateOf(x) }

On rotate*, the Acitivty restarts and the state is lost.

Use rememberSaveable() instead, to persist state.

var s = rememberSaveable { mutableStateOf(x) }

*Or when using dark mode or restarting the process.
8

https://developer.android.com/codelabs/jetpack-compose-basics#9

Hoisting state .kt|.html

Hoisting is about where in the UI tree to place state.

Move state up to a common ancestor of who needs it,
pass callbacks/lambdas down, to bubble events up.

Post(likeCount: Int, onLike: () -> Unit) {
 Text(text = "$likeCount")
 Button(onClick = onLike) { Text("+1") } }

var likes …; Post(likes, onLike = { likes++ })
9

https://github.com/tamberg/mse-tsm-mobcom/blob/main/02/Android/MyStatefulApp/app/src/main/java/com/example/mystatefulapp/MainActivity.kt#L45
https://developer.android.com/codelabs/jetpack-compose-basics#7

Hands-on, 10': State in Compose

Fix state and logic, commit and push changes.

- Update your private repository (see these slides).
- Open the MyStatefulApp in your repository /02,

it implements a multi-page UI as sketched (p. 14)
- Use lambdas to update page, onNext/onBack.
- Make sure that MultiPage remembers its state.
- Try changing the screen orientation of the device.

10

http://tmb.gr/mc-ndr
https://github.com/tamberg/mse-tsm-mobcom/blob/main/02/Android/MyStatefulApp/app/src/main/java/com/example/mystatefulapp/MainActivity.kt#L45-L59

UI update loop .kt|.html

Events notify the code that e.g. a click has happened.

Handling events leads to the UI state being updated.

Which leads to the updated UI state being displayed.

Upon seeing the updated UI state, the user reacts.*

*Events can be triggered by the system, as well. 11

https://pl.kotl.in/ET6Y2m7lM
https://developer.android.com/codelabs/jetpack-compose-state#3

Lazy list components .kt|.html

A LazyColumn or LazyRow allows 1000+ items, by
creating visible items lazyly, when scrolling the list.

import androidx.compose.foundation.lazy.items

LazyColumn(modifier = …) { // or LazyRow
 items(items = names) { name ->
 Greeting(name = name)
 }
} 12

https://github.com/tamberg/mse-tsm-mobcom/blob/main/02/Android/MyViewModelApp/app/src/main/java/com/example/myviewmodelapp/MainActivity.kt#L67-L71
https://developer.android.com/codelabs/jetpack-compose-basics#8

Mutable observable lists .kt|.html

toMutableStateList() makes mutable lists observable*.

val list = listOf(…).toMutableStateList()

This works with remember(), but it's not …Saveable().

Also, large data objects should not be stored in the UI.

*By the Compose framework, to update the UI. 13

https://github.com/tamberg/mse-tsm-mobcom/blob/main/02/Android/MyViewModelApp/app/src/main/java/com/example/myviewmodelapp/MainActivity.kt#L56-L59
https://developer.android.com/codelabs/jetpack-compose-state#10

ViewModel overview .html

A ViewModel exposes application state to the UI, it
encapsulates business logic, caches and persists state.

This relieves the UI from having to re-fetch data when
navigating between activities, or rotating the screen.

It stays around as long as its ViewModelStoreOwner,
e.g. an activity, a UI fragment or a navigation graph.

14

https://developer.android.com/topic/libraries/architecture/viewmodel

ViewModel implementation .kt|.html

To implement a ViewModel create a new subclass of it.

class MyViewModel : ViewModel() {
 val people = listOf(Person("A"), …) // data
 fun remove(person: Person) { … } // logic
}

Usually the data itself is kept in a custom data class.

data class Person(val name: String)
15

https://github.com/tamberg/mse-tsm-mobcom/blob/main/02/Android/MyViewModelApp/app/src/main/java/com/example/myviewmodelapp/MainActivity.kt#L52
https://developer.android.com/codelabs/jetpack-compose-state#11

ViewModel instance .kts|.kt|.html

The viewModel() call returns an existing instance of
your ViewModel or creates a new one in that scope.

fun MyUI(myVM: MyViewModel = viewModel()) { …

If you add this to app/build.gradle.kts dependencies.

implementation("androidx.lifecycle:lifecycle-
viewmodel-compose:{latest_version}")

16

https://github.com/tamberg/mse-tsm-mobcom/blob/main/02/Android/MyViewModelApp/app/build.gradle.kts#L45
https://github.com/tamberg/mse-tsm-mobcom/blob/main/02/Android/MyViewModelApp/app/src/main/java/com/example/myviewmodelapp/MainActivity.kt#L65
https://developer.android.com/codelabs/jetpack-compose-state#11

ViewModel lifecycle .png|.html

17

on
Cr
ea
te

on
St
ar
t

on
Re
su
me

ro
ta
te
()

on
Pa
us
e

on
St
op

on
De
st
ro
y

on
Cr
ea
te

on
St
ar
t

on
Re
su
me

fi
ni
sh
()

on
Pa
us
e

on
St
op

on
De
st
ro
y

on
Cl
ea
re
d

A ViewModel stays in memory until finish() is called,
or in general, until its ViewModelStoreOwner ends.

 ViewModel scope

 Activity _Activity_

https://developer.android.com/static/images/topic/libraries/architecture/viewmodel-lifecycle.png
https://developer.android.com/topic/libraries/architecture/viewmodel

ViewModel caveats .html

The ViewModel is not a part of the UI composition.

Do not hold state created in composables, like a value
to be remembered, as this could cause memory leaks.

Also, no references to lifecycle-related classes, such as
the app Context or Resources, for the same reason.

18

https://developer.android.com/topic/libraries/architecture/viewmodel

ViewModel best practice .html

Use ViewModels as a screen level state holder, not for
reusable UI parts, because instances are not reusable.

Keep the names of the methods a ViewModel exposes
and those of the UI state fields as generic as possible.

Do not pass a ViewModel to other classes, functions or
UI components to prevent access by lower-level code.

19

https://developer.android.com/topic/libraries/architecture/viewmodel#best-practices

Hands-on, 10': ViewModel

Extend the code, commit and push changes.

- Open the MyViewModelApp in your repository /02
which implements a ViewModel as sketched before.

- Add a property surname to the Person data class.
- Make sure, the property is available in Greeting.
- If show more was clicked, display the full name.
- Add a remove() function to the ViewModel class.

20

Summary

These are the basics of managing state on Android.

Remembering saveable UI state in the composition.

Moving state up (hoisting) and forwarding events.

Using a ViewModel to separate data/logic from UI.

Next: Storing Data on Android. 21

Challenge: Live data

Work through the Jetpack Compose TODO codelab.

- Start from this BasicTODOCodelab app project.
- Add the project files to your private repository.
- Make sure not to add the 3rd-party repository.
- Git commit and push your code to your repo.

Done? There are more codelabs, e.g. on TODO. 22

https://example.com
https://example.com
https://developer.android.com/courses/jetpack-compose/course
https://example.com

Feedback or questions?

Write me on Teams or email

thomas.amberg@fhnw.ch

Thanks for your time. 23

mailto:thomas.amberg@fhnw.ch

