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Overview

These slides show how to manage state on Android.

How application UI state can be saved in Compose.

How to use a ViewModel to move data/logic away.
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Prerequisites

Have some basic knowledge of writing Kotlin code.

Finish the lesson on composing UIs for Android.

Bring your Android device or use the emulator.
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http://tmb.gr/mc-ktn
http://tmb.gr/mc-uis


Compose is Kotlin  .kt|.html

Compose uses nested function calls and Kotlin idioms.

fun Row(
    modifier: Modifier = Modifier, …,
    content: @Composable RowScope.() -> Unit)

Row(…, { … }) // content param is a lambda
Row(…) { … } // trailing lambda, outside ()
Row() { … } // default params can be omitted 
Row { … } // empty constructor, OK to omit () 4

https://pl.kotl.in/FvvQ4fZS_
https://developer.android.com/develop/ui/compose/kotlin


Conditional UI  .kt|.html

Use conditionals (if, etc.), to show/hide UI elements.

if (newToThis) { Onboarding() } else { App() }

A multi-page UI could work like this, using when.

when (page) {
    1 -> ScreenA(…) // calls page++
    2 -> ScreenB(…) // calls page++ or page--
    else ScreenC(…) }
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https://github.com/tamberg/mse-tsm-mobcom/blob/main/02/Android/MyStatefulApp/app/src/main/java/com/example/mystatefulapp/MainActivity.kt#L46
https://developer.android.com/codelabs/basic-android-kotlin-compose-conditionals#0


Button onClick event    .html

Button provides a onClick event, to plug in a lambda.

@Composable
fun MyCounter() {
  var n = remember { mutableStateOf(0) } //*
  Button(onClick = { n.value++ }) {
    Text("${n.value}")
  } }

*Value stays around, like a static local variable in C. 6

https://developer.android.com/develop/ui/compose/components/button


Mutable state    .html

Compose updates the UI, if underlying data changes, 
mutableStateOf() provides plumbing needed for this.

val state = x // does not notify on changes
val state = mutableStateOf(x) // not stored

Functions can be (re)evaluated any time, in any order, 
remember() preserves the state across recomposition.

val state = remember { mutableStateOf(x) } 7

https://developer.android.com/codelabs/jetpack-compose-basics#6


Saveable state    .html

The remember() function works as long as the Activity.

val s = remember { mutableStateOf(x) }

On rotate*, the Acitivty restarts and the state is lost.

Use rememberSaveable() instead, to persist state.

var s = rememberSaveable { mutableStateOf(x) }

*Or when using dark mode or restarting the process.
8

https://developer.android.com/codelabs/jetpack-compose-basics#9


Hoisting state  .kt|.html

Hoisting is about where in the UI tree to place state.

Move state up to a common ancestor of who needs it, 
pass callbacks/lambdas down, to bubble events up.

Post(likeCount: Int, onLike: () -> Unit) {
  Text(text = "$likeCount")
  Button(onClick = onLike) { Text("+1") } }

var likes …; Post(likes, onLike = { likes++ })
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https://github.com/tamberg/mse-tsm-mobcom/blob/main/02/Android/MyStatefulApp/app/src/main/java/com/example/mystatefulapp/MainActivity.kt#L45
https://developer.android.com/codelabs/jetpack-compose-basics#7


Hands-on, 10': State in Compose

Fix state and logic, commit and push changes.

- Update your private repository (see these slides).
- Open the MyStatefulApp in your repository /02,

it implements a multi-page UI as sketched (p. 14)
- Use lambdas to update page, onNext/onBack.
- Make sure that MultiPage remembers its state.
- Try changing the screen orientation of the device.
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http://tmb.gr/mc-ndr
https://github.com/tamberg/mse-tsm-mobcom/blob/main/02/Android/MyStatefulApp/app/src/main/java/com/example/mystatefulapp/MainActivity.kt#L45-L59


UI update loop  .kt|.html

Events notify the code that e.g. a click has happened.

Handling events leads to the UI state being updated.

Which leads to the updated UI state being displayed.

Upon seeing the updated UI state, the user reacts.*

*Events can be triggered by the system, as well. 11

https://pl.kotl.in/ET6Y2m7lM
https://developer.android.com/codelabs/jetpack-compose-state#3


Lazy list components      .kt|.html

A LazyColumn or LazyRow allows 1000+ items, by 
creating visible items lazyly, when scrolling the list.

import androidx.compose.foundation.lazy.items

LazyColumn(modifier = …) { // or LazyRow
  items(items = names) { name ->
    Greeting(name = name)
  }
} 12

https://github.com/tamberg/mse-tsm-mobcom/blob/main/02/Android/MyViewModelApp/app/src/main/java/com/example/myviewmodelapp/MainActivity.kt#L67-L71
https://developer.android.com/codelabs/jetpack-compose-basics#8


Mutable observable lists  .kt|.html

toMutableStateList() makes mutable lists observable*.

val list = listOf(…).toMutableStateList()

This works with remember(), but it's not …Saveable().

Also, large data objects should not be stored in the UI.

*By the Compose framework, to update the UI. 13

https://github.com/tamberg/mse-tsm-mobcom/blob/main/02/Android/MyViewModelApp/app/src/main/java/com/example/myviewmodelapp/MainActivity.kt#L56-L59
https://developer.android.com/codelabs/jetpack-compose-state#10


ViewModel overview    .html

A ViewModel exposes application state to the UI, it 
encapsulates business logic, caches and persists state.

This relieves the UI from having to re-fetch data when 
navigating between activities, or rotating the screen.

It stays around as long as its ViewModelStoreOwner, 
e.g. an activity, a UI fragment or a navigation graph.

14

https://developer.android.com/topic/libraries/architecture/viewmodel


ViewModel implementation  .kt|.html

To implement a ViewModel create a new subclass of it.

class MyViewModel : ViewModel() {
    val people = listOf(Person("A"), …) // data
    fun remove(person: Person) { … } // logic
}

Usually the data itself is kept in a custom data class.

data class Person(val name: String)
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https://github.com/tamberg/mse-tsm-mobcom/blob/main/02/Android/MyViewModelApp/app/src/main/java/com/example/myviewmodelapp/MainActivity.kt#L52
https://developer.android.com/codelabs/jetpack-compose-state#11


ViewModel instance  .kts|.kt|.html

The viewModel() call returns an existing instance of 
your ViewModel or creates a new one in that scope.

fun MyUI(myVM: MyViewModel = viewModel()) { …

If you add this to app/build.gradle.kts dependencies.

implementation("androidx.lifecycle:lifecycle-
viewmodel-compose:{latest_version}")
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https://github.com/tamberg/mse-tsm-mobcom/blob/main/02/Android/MyViewModelApp/app/build.gradle.kts#L45
https://github.com/tamberg/mse-tsm-mobcom/blob/main/02/Android/MyViewModelApp/app/src/main/java/com/example/myviewmodelapp/MainActivity.kt#L65
https://developer.android.com/codelabs/jetpack-compose-state#11


ViewModel lifecycle   .png|.html
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A ViewModel stays in memory until finish() is called, 
or in general, until its ViewModelStoreOwner ends.

    _ViewModel scope_

 _Activity_    _Activity_

https://developer.android.com/static/images/topic/libraries/architecture/viewmodel-lifecycle.png
https://developer.android.com/topic/libraries/architecture/viewmodel


ViewModel caveats     .html

The ViewModel is not a part of the UI composition.

Do not hold state created in composables, like a value 
to be remembered, as this could cause memory leaks.

Also, no references to lifecycle-related classes, such as 
the app Context or Resources, for the same reason.

18

https://developer.android.com/topic/libraries/architecture/viewmodel


ViewModel best practice    .html

Use ViewModels as a screen level state holder, not for 
reusable UI parts, because instances are not reusable.

Keep the names of the methods a ViewModel exposes 
and those of the UI state fields as generic as possible.

Do not pass a ViewModel to other classes, functions or 
UI components to prevent access by lower-level code.
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https://developer.android.com/topic/libraries/architecture/viewmodel#best-practices


Hands-on, 10': ViewModel

Extend the code, commit and push changes.

- Open the MyViewModelApp in your repository /02
which implements a ViewModel as sketched before.

- Add a property surname to the Person data class.
- Make sure, the property is available in Greeting.
- If show more was clicked, display the full name.
- Add a remove() function to the ViewModel class.
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Summary

These are the basics of managing state on Android.

Remembering saveable UI state in the composition.

Moving state up (hoisting) and forwarding events.

Using a ViewModel to separate data/logic from UI.

Next: Storing Data on Android. 21



Challenge: Live data

Work through the Jetpack Compose TODO codelab.

- Start from this BasicTODOCodelab app project.
- Add the project files to your private repository.
- Make sure not to add the 3rd-party repository.
- Git commit and push your code to your repo.

Done? There are more codelabs, e.g. on TODO. 22

https://example.com
https://example.com
https://developer.android.com/courses/jetpack-compose/course
https://example.com


Feedback or questions?

Write me on Teams or email

thomas.amberg@fhnw.ch

Thanks for your time. 23

mailto:thomas.amberg@fhnw.ch

