Mobile Computing
Managing State on Android

tmb.gr/mec-mst

SSSSSS

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by/2.5/
https://source.android.com
http://tmb.gr/mc-mst
https://docs.google.com/presentation/d/1mbpuNFKMkPtXqV9OuvHm09QFt_Ev9G8ano8C3elxo-g/edit?usp=sharing

Overview

These slides show how to manage state on Android.
How application Ul state can be saved in Compose.

How to use a ViewModel to move data/logic away.

Prerequisites
Have some basic knowledge of writing Kotlin code.
Finish the lesson on composing Uls for Android.

Bring your Android device or use the emulator.

http://tmb.gr/mc-ktn
http://tmb.gr/mc-uis

Compose 1s Kotlin kt|.html

Compose uses nested function calls and Kotlin idioms.

fun Row(
modifier: Modifier = Modifier, ..,
content: @Composable RowScope.() -> Unit)

Row(.., { .. })
Row(..) { ..}
Row() { .. }

Row { .. }

https://pl.kotl.in/FvvQ4fZS_
https://developer.android.com/develop/ui/compose/kotlin

Conditional Ul kt|.html

Use conditionals (if, etc.), to show/hide Ul elements.
if (newToThis) { Onboarding() } else { App() }
A multi-page Ul could work like this, using when.

when (page) A
1 -> ScreenA(..)
2 -> ScreenB(..)
else ScreenC(..)

}

https://github.com/tamberg/mse-tsm-mobcom/blob/main/02/Android/MyStatefulApp/app/src/main/java/com/example/mystatefulapp/MainActivity.kt#L46
https://developer.android.com/codelabs/basic-android-kotlin-compose-conditionals#0

Button onClick event html

Button provides a onClick event, to plug in a lambda.

@Composable
fun MyCounter() {
var n =
Button(onClick = { n.value++ }) {
Text("S{n.value}")

Py

0

https://developer.android.com/develop/ui/compose/components/button

Mutable state html

Compose updates the Ul, if underlying data changes,
mutableStateOf() provides plumbing needed for this.

val state = Xx
val state = mutableStateOf(x)

Functions can be (re)evaluated any time, in any order,
remember() preserves the state across recomposition.

val state = remember { mutableStateOf(x) }

https://developer.android.com/codelabs/jetpack-compose-basics#6

Saveable state html

The remember() function works as long as the Activity.

val s = remember { mutableStateOf(x) }

On rotate*, the Acitivty restarts and the state is lost.

Use rememberSaveable() instead, to persist state.

var s = rememberSaveable { mutableStateOf(x) }

https://developer.android.com/codelabs/jetpack-compose-basics#9

Hoisting state kt|.html

Hoisting is about where in the Ul tree to place state.

Move state up to a common ancestor of who needs it,
pass callbacks/lambdas down, to bubble events up.

Post(likeCount: Int, onLike: () -> Unit) {
Text(text = "SlikeCount")
Button(onClick = onLike) { Text("+1") } }

var likes ..; Post(likes, onLike = { likes++ })

https://github.com/tamberg/mse-tsm-mobcom/blob/main/02/Android/MyStatefulApp/app/src/main/java/com/example/mystatefulapp/MainActivity.kt#L45
https://developer.android.com/codelabs/jetpack-compose-basics#7

Hands-on, 10": State in Compose

Fix state and logic, commit and push changes.

Update your private repository (see these slides).
Open the MyStatefulApp in your repository /02,
it implements a multi-page Ul as sketched (p. 14)
Use lambdas to update page, onNext/onBack.
Make sure that MultiPage remembers its state.
Try changing the screen orientation of the device.

http://tmb.gr/mc-ndr
https://github.com/tamberg/mse-tsm-mobcom/blob/main/02/Android/MyStatefulApp/app/src/main/java/com/example/mystatefulapp/MainActivity.kt#L45-L59

UI update loop kt|.html

Events notify the code that e.g. a click has happened.
Handling events leads to the Ul state being updated.
Which leads to the updated Ul state being displayed.

Upon seeing the updated Ul state, the user reacts.*

https://pl.kotl.in/ET6Y2m7lM
https://developer.android.com/codelabs/jetpack-compose-state#3

Lazy list components kt|.html

A LazyColumn or LazyRow allows 1000+ items, by
creating visible items lazyly, when scrolling the list.

import androidx.compose.foundation.lazy.items

LazyColumn(modifier = ..) {
items(items = names) { name ->
Greeting(name = name)

}
}

https://github.com/tamberg/mse-tsm-mobcom/blob/main/02/Android/MyViewModelApp/app/src/main/java/com/example/myviewmodelapp/MainActivity.kt#L67-L71
https://developer.android.com/codelabs/jetpack-compose-basics#8

Mutable observable lists kt|.html

toMutableStateList() makes mutable lists observable*.

val list = 1istOf(..).toMutableStatelList()

This works with remember(), but it's not ...Saveable().

Also, large data objects should not be stored in the UI.

https://github.com/tamberg/mse-tsm-mobcom/blob/main/02/Android/MyViewModelApp/app/src/main/java/com/example/myviewmodelapp/MainActivity.kt#L56-L59
https://developer.android.com/codelabs/jetpack-compose-state#10

ViewModel overview html

A ViewModel exposes application state to the UlI, it
encapsulates business logic, caches and persists state.

This relieves the UI from having to re-fetch data when
navigating between activities, or rotating the screen.

It stays around as long as its ViewModelStoreOwner,
e.g. an activity, a Ul fragment or a navigation graph.

https://developer.android.com/topic/libraries/architecture/viewmodel

ViewModel implementation kt|.html

To implement a ViewModel create a new subclass of it.

class MyViewModel : ViewModel() {
val people = listOf(Person("A"), ..)
fun remove(person: Person) { ..}

}

Usually the data itself is kept in a custom data class.

data class Person(val name: String)

https://github.com/tamberg/mse-tsm-mobcom/blob/main/02/Android/MyViewModelApp/app/src/main/java/com/example/myviewmodelapp/MainActivity.kt#L52
https://developer.android.com/codelabs/jetpack-compose-state#11

ViewModel instance kts|.kt|.html

The viewModel() call returns an existing instance of
your ViewModel or creates a new one in that scope.

fun MyUI(myVM: MyViewModel = viewModel()) { ..

If you add this to app/build.gradle.kts dependencies.

implementation("androidx.lifecycle:lifecycle-
viewmodel-compose:{latest_version}")

https://github.com/tamberg/mse-tsm-mobcom/blob/main/02/Android/MyViewModelApp/app/build.gradle.kts#L45
https://github.com/tamberg/mse-tsm-mobcom/blob/main/02/Android/MyViewModelApp/app/src/main/java/com/example/myviewmodelapp/MainActivity.kt#L65
https://developer.android.com/codelabs/jetpack-compose-state#11

ViewModel lifecycle .png|.html

A ViewModel stays in memory until finish() is called,
or in general, until its ViewModelStoreOwner ends.

x % QJ\\ \Q\\ @
i x§ .S v
X < R oY
o ® %4 &

https://developer.android.com/static/images/topic/libraries/architecture/viewmodel-lifecycle.png
https://developer.android.com/topic/libraries/architecture/viewmodel

ViewModel caveats html

The ViewModel is not a part of the UI composition.

Do not hold state created in composables, like a value
to be remembered, as this could cause memory leaks.

Also, no references to lifecycle-related classes, such as
the app Context or Resources, for the same reason.

https://developer.android.com/topic/libraries/architecture/viewmodel

ViewModel best practice html

Use ViewModels as a screen level state holder, not for
reusable Ul parts, because instances are not reusable.

Keep the names of the methods a ViewModel exposes
and those of the UI state fields as generic as possible.

Do not pass a ViewModel to other classes, functions or
UI components to prevent access by lower-level code.

https://developer.android.com/topic/libraries/architecture/viewmodel#best-practices

Hands-on, 10': ViewModel

Extend the code, commit and push changes.

Open the MyViewModelApp in your repository /02
which implements a ViewModel as sketched before.
Add a property surname to the Person data class.
Make sure, the property is available in Greeting.

If show more was clicked, display the full name.
Add a remove() function to the ViewModel class.

Summary

These are the basics of managing state on Android.
Remembering saveable Ul state in the composition.
Moving state up (hoisting) and forwarding events.

Using a ViewModel to separate data/logic from UI.

Work through the Jetpack Compose TODO codelab.

- Start from this BasicTODOCodelab app project.
- Add the project files to your private repository.
- Make sure not to add the 3rd-party repository.
- Git commit and push your code to your repo.

codelabs on TODO

https://example.com
https://example.com
https://developer.android.com/courses/jetpack-compose/course
https://example.com

Feedback or questions?

Write me on Teams or email

thomas.amberg@thnw.ch

mailto:thomas.amberg@fhnw.ch

