[IoT Engineering
9: Dashboards and Apps
for Sensor Data

tmb.gr/iot-9

https://creativecommons.org/licenses/by-sa/4.0/
http://tmb.gr/iot-9

Overview

These slides introduce sensor dashboards and apps.
From hosted services and apps to "build your own".

How to move data and integrate with platforms.

Prerequisites
We use curl and the mqtt CLI tool to emulate devices.
The Raspberry Pi with Node.js will be our "backend".

Some examples require Docker on your computer.

https://github.com/tamberg/fhnw-iot/wiki/Command-Line-Tools#curl
https://github.com/tamberg/fhnw-iot/wiki/Command-Line-Tools#mqtt
https://github.com/tamberg/fhnw-iot/wiki/Raspberry-Pi-Zero-W#setup
https://github.com/tamberg/fhnw-iot/wiki/Raspberry-Pi-Zero-W#javascript-with-nodejs
https://www.docker.com/

I0T reference model

N

Device

O

/

Sensor or
Actuator
Physical
Interaction

Cloud

Backend

*" Virtual

User

Interaction

A

¥ Client

Dashboards

Dashboard as a service — easy set up, but: dependency.
Self-hosted dashboard — keep control, but: operations.
Graph libraries — re-use, flexible, but: dev & ops work.

Build your own — max. control, but also max. work.

Dashboard as a service

Backend, defining data formats & information model.
Device-side backend API to get data in (HTTP/MQTT).
Data storage or caching functionality (sliding window).
Client-side API to get data out (HTTP or Websocket).

Private or public dashboard Web UI or client app.

Information model

The information model defines how data is structured.
It's the "common denominator" of all involved parties.
Data formats (on the wire) define how it's transported.

The information model is more about data semantics.

ThingSpeak

ThingSpeak timestamps, stores and displays data.

It supports per device channels with 1-N fields each.
Graph controls can be embedded in HTML Web Uls.
ThingSpeak provides HTTP and MQTT endpoints.

https://thingspeak.com/

ThingSpeak HTTP API

ThingSpeak has a device- and client-side HTTP API.

Host: api.thingspeak.com
Port: 80 or 443

POST /update?key=WRITE_API_KEY&field1=42

GET /channels/CHANNEL_ID/feed.json?
key=READ_API_KEY

https://ch.mathworks.com/help/thingspeak/writedata.html
https://ch.mathworks.com/help/thingspeak/readdata.html
https://ch.mathworks.com/help/thingspeak/rest-api.html

ThingSpeak MQTT API

ThingSpeak has a device- and client-side MQTT API.

Host: mqtt.thingspeak.com
Port: 1883 or 8883 (or Websocket: 80, 443)

PUB -t 'channels/CHANNEL_ID/publish/
WRITE_API_KEY' -m 'field1=42&field2=23'

SUB -t 'channels/CHANNEL_ID/subscribe/
FORMAT/READ_API_KEY'

https://ch.mathworks.com/help/thingspeak/publishtoachannelfeed.html
https://ch.mathworks.com/help/thingspeak/subscribetoachannelfeed.html
https://ch.mathworks.com/help/thingspeak/mqtt-basics.html

® ©® [J Uniontown Weather Data- Th' X +

<« 2> C @ https://thingspeak.com/channels/3 Q W% % é?a ‘

|:| ThingSpeak“ Channels = Apps Community Support ~ HowtoBuy Signin SignUp

Uniontown Weather Data

Channel ID: 3 Weather data from Uniontown, PA

Author: iothans W temperature, humidity, weather

Access: Public station, dew point, channel_3

Field 1 Chart g © Field 2 Chart &g o
Uniontown Weather Data Uniontown Weather Data
80 100
(] >
E 5
= 3
5 60 g
e T
£ 50
@ g
= 40 =
0 [
2 K
7] 4
5 20
| 26. Feb 28. Feb 2. Mar 4. Mar 4 28. Feb 1. Mar 2. Mar 3. Mar 4. Mar
Time Date

ThingSpeak.com ThingSpeak.com

https://thingspeak.com/channels/3

Cayenne

Cayenne apps display data from any MQTT broker.

Per thing (device), multiple data channels are
supported, with type, unit and value fields.

SDKs for ESP8266, Node.js, etc., simplify sending
values, e.g. encoded in the CayenneLPP data format.

Cayenne also provides an MQTT broker endpoint.

https://cayenne.mydevices.com/
https://github.com/myDevicesIoT/Cayenne-MQTT-ESP
https://github.com/myDevicesIoT/cayennejs
https://mydevices.com/cayenne/docs/lora/#lora-cayenne-low-power-payload

Cayenne MQTT API

Cayenne specifies a device-side MQTT API and SDKs.

Host: mgtt.mydevices.com
Port: 1883 or 8883

PUB -t 'v1/MQTT_USER/things/DEVICE_ID/
data/CHANNEL_ID" -m "'TYPE,UNIT=VALUE'

For details, see the Cayenne payload documentation,
which is wrapped in device specific integrations.

https://mydevices.com/cayenne/docs/cayenne-mqtt-api/#cayenne-mqtt-api-manually-publishing-subscribing
https://mydevices.com/cayenne/docs/cayenne-mqtt-api/#cayenne-mqtt-api-mqtt-messaging-topics-send-sensor-data

Cayenne HTTP API
The Cayenne i0OS and Android apps use an HTTP API.

It enables device management, to set up devices/keys.
It is client-only, devices connect to the MQTT API.

As soon as data comes in, graphs are generated*.

https://itunes.apple.com/us/app/cayenne-connect-create-control/id1057997711?ls=1&mt=8
https://play.google.com/store/apps/details?id=com.mydevices.cayenne&hl=en
http://mydevices.com/cayenne/docs/cayenne-api/

19:46 B 0 @ LTEL @ 19:51 & v @ LTEL B 19:54 A 0 @ LTEA B

< Add Device < Cayenne LPP < fhnw-iot-0

Cayenne LPP
c

Raspberr\/ Pi Arduino Cayenne Low Power Payload
LPP o < Temperature
RSS! SNR)
iy
< 2 alll-53.00 all 7.75 § 27.20
A< DOCS & VIDEOS b
fhnw-iot-0
Need one? Need one?
y LoRa Bring Your Own 00578A462BB1 ZAZEI
Thing
Already Registered v
c TRACKING
CayenneApl This device moves ¥

Need one? What's this?

e 15

Integrations
Integrations allow backend services to work together.
E.g. TTN backend integration w/ Cayenne MyDevices.

Integration adapters can be provided by either party.

The adapter code can be hosted on either backend*.

Settings include endpoint, format and API tokens.

® © ® @ Editwebhook - fhnw-iot - The X =+

&€ > C @ https://eul.cloud.thethings.network/console/applications/fhnw-iot/integrations/webhooks/cayenne Q % X &£ R ‘

m fhnw-iot Template information

Drag-and-Drop loT Project Builder

BE Overview Cayenne
About Cayenne @ | Documentation &

X Enddevices

M Livedata General settings
Webhook ID *
<> Payload formatters v
cayenne
J. Integrations A
Webhook format
N mQrT JSON
* Webhooks
* Storage Integration Endpoint settings
Base URL”*

W AWSIoT
https://lora.mydevices.com/v1/networks/ttn
% AzureloT Hub
Downlink API key

* LoRa Cloud ®

The API key will be provided to the endpoint using the "X-Downlink-Apikey" header

00 r llabhAaratarce

Hands-on, 15': Dashboard as a service

Choose a dashboard service* and a transport protocol.
Check the API docs to understand the payload format.
Send data "as a device" with curl or with the mqtt CLI.

The CLI runs on the Raspberry Pi or on your laptop.

ThingsBoard.io

https://github.com/tamberg/fhnw-iot/wiki/Command-Line-Tools#curl
https://github.com/tamberg/fhnw-iot/wiki/Command-Line-Tools#mqtt
https://thingsboard.io/

Glue code

Glue code is a simple way to integrate service APIs.

A custom adapter acts as a client of both services, e.g.
to get data from a LoRaWAN backend to a dashboard.

It converts payload formats, can be hosted anywhere.
Webhook HTTP

TTN POST > Glue Code POST ThingSpeak
REMG: el or MQTT [AGEN (SN or MQTT — EBEEIHl
SUB PUB

19

https://en.wikipedia.org/wiki/Glue_code

Node.js glue code Js Js

var client = new ttn.Client('eu', appIld, key);
client.on('message’', (devId, msg) => {
var bytes = msg.payload_raw;
var x = ((bytes[0] << 8) | bytes[1]) / 100.0;
http.post('http://api.thingspeak.com/update?’
+'api_key=' + writeApiKeys[msg.dev_id]
+ '&field1=' + x);
')

https://github.com/tamberg/fhnw-iot/blob/master/09/Nodejs/TtnToThingSpeakAdapterMqtt.js
https://github.com/tamberg/fhnw-iot/blob/master/09/Nodejs/TtnToThingSpeakAdapter.js

Serverless lambda functions
Serverless lambda functions are cloud hosted handlers.
Conceptually, a server is started for each Web request.
No resources are consumed between Web requests.

This execution model works well for glue code.

AWS Lambda. Azure Functions or Vercel

https://en.wikipedia.org/wiki/Serverless_computing
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://vercel.com/

Serverless Node.js with Vercel

Vercel provides hosting for serverless functions.

On you MacOS, Windows or Linux computer:

Install vercel with § npm install -g vercel

Get examples $ git clone https://github.com/
vercel/vercel then $ cd /examples

Or use examples linked from the following pages
Deploy with § vercel

https://vercel.com/now
https://github.com/vercel/vercel/tree/master/examples
https://github.com/vercel/vercel/tree/master/examples

Serverless Node.js glue code Js

Creating a Web service in Node.js ...

let server = http.createServer((req, res) => {
res.end("200 0K");

'

... becomes exporting a handler in Vercel Node.js:
module.exports = (req, res) => {
res.end("200 0OK");

'

https://github.com/tamberg/fhnw-iot/blob/master/09/Now/TtnToThingSpeakAdapter/index.js

Hands-on, 15": Glue code

Configure the TTN to ThingSpeak adapter glue code.
Create a free account and host the code on Vercel.

Use curl to simulate calls from the TTN backend:

S curl -v http://127.0.0.1:8080/ --data
"{"app_id" :"fhnw-iot dev_id”'”fhnw iot-arduin
o-1", "payload_raw" : FquAA=—

https://github.com/tamberg/fhnw-iot/blob/master/09/Now/TtnToThingSpeakAdapter/index.js
https://vercel.com/
https://github.com/tamberg/fhnw-iot/wiki/Command-Line-Tools#curl

Selt-hosted dashboard
A self-hosted dashboard backend includes:

- A way to run services (and keep them running)
- A service with an API to store or cache data
- A service serving dashboard resources

The backend can be hosted locally or in the cloud,
storage or cache can be a database, broker or both.

Docker

Docker provides OS-level virtualisation/containers.
Use it to run services on Windows, MacOS and Linux.

On the Raspberry Pi*, try installing Docker with

S sudo curl -sSL https://get.docker.com | sh
S sudo apt-get install docker-ce=18.06.1
~ce~3-0~raspbian issue

https://docs.docker.com/get-started/
https://docs.docker.com/desktop/windows/install/
https://docs.docker.com/desktop/mac/install/
https://docs.docker.com/engine/install/
https://docs.docker.com/install/linux/docker-ce/debian/#install-using-the-convenience-script
https://github.com/moby/moby/issues/38175

InfluxDB

InfluxDB is an open source time-series database.

- To run InfluxDB on Docker, type:

S docker run --name influxdb -p 8086 :8086
influxdb:2.1.1

- To set it up, open the Web UI or a new terminal:

S docker exec -it influxdb /bin/bash
S influx setup

https://en.wikipedia.org/wiki/InfluxDB
https://docs.influxdata.com/influxdb/v2.1/install/?t=Docker
http://127.0.0.1:9999/
https://docs.influxdata.com/influxdb/v2.1/tools/influx-cli/

Getting data into InfluxDB

InfluxDB has a number of mechanisms to get data in:

- Telegraf, a data collection agent, supports MQTT.

- Data formats include InfluxDB, CSV and JSON.

- InfluxDB scrapers can collect data from any HTTP
endpoint using the Prometheus data format.

- Additional InfluxDB integrations include Kafka.

https://docs.influxdata.com/telegraf/v1.9/introduction/installation/
https://www.influxdata.com/integration/mqtt-monitoring/
https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
https://docs.influxdata.com/influxdb/v2.1/reference/syntax/line-protocol/
https://github.com/influxdata/telegraf/tree/master/plugins/parsers/csv
https://github.com/influxdata/telegraf/tree/master/plugins/parsers/json
https://docs.influxdata.com/influxdb/v2.1/write-data/no-code/scrape-data/
https://prometheus.io/docs/instrumenting/exposition_formats/
https://www.influxdata.com/products/integrations/
https://www.influxdata.com/integration/kafka-telegraf-integration/

Telegraf

Telegraf is a data collection agent with many plugins.

- To run Telegraf on Docker, type:

S docker run --net=container:influxdb
telegraf

- To enable the MQTT plugin, use a telegraf.conf:

S docker exec -it telegraf /bin/bash
S nano telegraf.conf

https://docs.influxdata.com/telegraf/v1.9/introduction/installation/
https://docs.docker.com/samples/library/telegraf/

Telegraf MQTT input .conf

The telegraf.conf for an MQTT to InfluxDB adapter:
[[inputs.mqtt_consumer]]
servers = ["ssl://MQTT_HOST_OR_IP:8883"]
topics = ["TOPIC/SUBTOPIC"]
data_format = "json" ..

[[outputs.influxdb]]
urls = ["http://INFLUXDB_HOST_OR_IP:8086"]
database = "telegraf”

https://github.com/tamberg/fhnw-iot/blob/master/09/Docker/Telegraf/telegraf.conf

Grafana

Grafana is an open source Web dashboard backend.
It integrates nicely with InfluxDB and other sources.

- To run Grafana on Docker, type:
S docker run -d -p 3000:3000 grafana/grafana

- Then configure it to connect to InfluxDB:
http://127.0.0.1:3000/

- And create some graph views to display data.

https://grafana.com/
https://grafana.com/docs/grafana/latest/installation/docker/
http://localhost:3000/

® Decentlab Data Access - Indoc X

< > C

+

& https://demo.decentlab.com/dashboard/db/indoor-air-quality-demo?refresh=15m&orgld=3

* %% Indoor Air Quality Demo - @

LoRa WAN demo project by

dBCElNk

1.2K
1.0K
800
400
2/15
12:00

== Device 1404

2.844
2.843
2.842
2.841

2.840
2.839

2.838
2/15

12:00
Device 1404

CO2, temperature, and
humidity sensor

CO2 [ppm] (mean of 15m) Current
625.5
2/16 2/16 217 2117 2/18
00:00 12:00 00:00 12:00 00:00 pPpm
Battery [V] (mean of 15m) Current
2.84V

2/16
00:00

2/16 2117 2117 2/18
12:00 00:00 12:00 00:00

% g @

€ ZoomOut » @ Last3days Refreshevery15m & = Signin

Node 1404 (CO2)

LoRa infrastructure provided by

‘\\THETHINGS
NETWORK

Humidity [%] (mean of 15m) Current
42,0
41.0
40.0
> 38.9%
38.0 °
2/15 2/16 2/16 217 217 2/18
12:00 00:00 12:00 00:00 12:00 00:00
== Device 1404
Temperature [°C] (mean of 15m) Current
235
23.0
225
22,0
22.84°C
215
2/15 2/16 2/16 217 217 2/18
12:00 00:00 12:00 00:00 12:00 00:00

== Device 1404

https://demo.decentlab.com/dashboard/db/indoor-air-quality-demo?refresh=15m&orgId=3

Hands-on, 15': Docker hosted dashboard

Install Docker on your computer (not Raspberry Pi).
Run InfluxDB and run/create a Gratana dashboard.
Run Telegraf to get data from test.mosquitto.org.

Send data "as a device" with mqtt, to Mosquitto.

http://test.mosquitto.org/
https://github.com/tamberg/fhnw-iot/wiki/Command-Line-Tools#mqtt

Graph libraries
For custom dashboards, graph libraries are available:

- Plotly.js is quite easy to get started in Node.js
- CanvasJS has a big collection of React Charts
- Google Charts has been around for a while

There are many other libraries, make sure to check
(long term) availability and source code license.

https://github.com/plotly/plotly.js
https://plotly.com/nodejs/getting-started/
https://canvasjs.com/
https://canvasjs.com/react-charts/
https://developers.google.com/chart/

Summary

We created Web dashboards & apps for sensor data.
We saw how data gets to a hosted dashboard service.
We wrote adapter glue code for backend integration.

We set up a self hosted dashboard with Docker.

Feedback or questions?

Write me on https://fhnw-iot.slack.com/

Or email thomas.amberg@thnw.ch

Thanks for your time.

https://fhnw-iot.slack.com/
mailto:thomas.amberg@fhnw.ch

